资源类型

期刊论文 86

会议视频 1

年份

2023 18

2022 13

2021 7

2020 2

2019 3

2018 4

2017 6

2016 3

2015 4

2014 9

2013 3

2012 2

2011 3

2010 2

2007 5

2003 1

展开 ︾

关键词

深部开采 2

2

&alpha 1

Key technology 1

临界浓度 1

二氧化碳 1

二氧化碳还原 1

产氧反应 1

催化剂活化 1

光热 1

关键技术 1

冶金 1

助催化剂 1

原位谱学 1

固体氧化物燃料电池 1

固体氧化物电解池 1

型三氧化二铁 1

氧化钛 1

氧化铈 1

展开 ︾

检索范围:

排序: 展示方式:

Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation

Yiyi Fan, Jinyong Li, Saidi Wang, Xiuxia Meng, Yun Jin, Naitao Yang, Bo Meng, Jiaquan Li, Shaomin Liu

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 882-891 doi: 10.1007/s11705-020-1990-1

摘要: Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H . Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni were assembled to form an MSM supported on Al O hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H /CO mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 10 mol·m ·s ·Pa . Compared with the original Ti C T /Al O hollow fiber membranes, the permeation of hydrogen through the Ni -Ti C T /Al O membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni . The interlayer spacing of MSMs was tuned by Ni . During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni tailored Ti C T /Al O hollow fiber membranes can inspire promising industrial applications.

关键词: MXene     H2/CO2 separation     nickel ions     hollow fiber    

minimized fluorescent chemosensor array utilizing carboxylate-attached polythiophenes on a chip for metal ions

Yui Sasaki, Xiaojun Lyu, Zhoujie Zhang, Tsuyoshi Minami

《化学科学与工程前沿(英文)》 2022年 第16卷 第1期   页码 72-80 doi: 10.1007/s11705-021-2037-y

摘要: Chemosensor arrays have a great potential for on-site applications in real-world scenarios. However, to fabricate on chemosensor array a number of chemosensors are required to obtain various optical patterns for multi-analyte detection. Herein, we propose a minimized chemosensor array composed of only two types of carboxylate-functionalized polythiophene derivatives for the detection of eight types of metal ions. Upon recognition of the metal ions, the polythiophenes exhibited changes in their fluorescence intensity and various spectral shifts. Although both chemosensors have the same polymer backbone and recognition moiety, only the difference in the number of methylene groups contributed to the difference in the fluorescence response patterns. Consequently, the metal ions in aqueous media were successfully discriminated qualitatively and quantitatively by the chemosensor microarray on the glass chip. This study offers an approach for achieving a minimized chemosensor array just by changing the alkyl chain lengths without the necessity for many receptors and reporters.

关键词: metal ions     polythiophene     chemosensor array     fluorescence     pattern recognition    

Spectrokinetics study of probable effects of diverse inorganic ions on bleaching of dye

Rafia AZMAT, Masooda QADRI, Fahim UDDIN

《化学科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 131-138 doi: 10.1007/s11705-010-0556-z

摘要: Toluidine blue (TB) is an important anticoagulant metachromasia molecule showing a pronounced variation in the visible spectrum due to the aggregation phenomenon and electrostatic interaction with the charged synthetic and biologic polymers. The current study describes the interactive role of diverse inorganic material ions on the bleaching of toluidine blue (tolonium chloride) (TB ) with urea in acidic and basic media using the spectrophotometric technique. The spectra of TB and urea with different cations and anions were monitored and their characteristic features are presented here. The negative effect of added cations on reduction may be the result of altered electron pathways which led to suppression of the reduction/bleaching of TB, while a slight decrease in dye reduction by added anions may be due to the scavenging of the OH* radical. It has been observed in the case of Co that in addition to the electron-transfer reaction, other processes like layer and precipitate formation also appear to be taking place. The dye bleaching process followed pseudo first order kinetics with respect to TB, urea, and H ion, whereas significant decoloration in the presence of urea proved that reductants control the redox reaction. No decoloration in acidic medium with diverse ions was seen compared to alkaline media, showing that water pH played an important role in the bleaching of dye. The reduction/bleaching of dye was investigated at different temperatures, and energy parameters were evaluated for a TB -Urea reaction, including the energy of activation ( = 39.60 kJ·mol ), enthalpy of activation (? = 34?kJ·mol ), entropy of activation (? = 146.5 kJ mol ·K ), and free energy of activation (ΔG* = -52.35 kJ·mol ). A mechanism of interaction of diverse ions in dye bleaching and a mechanism of reduction based on the above findings is proposed.

关键词: TB     diverse ions     suppress     decoloration    

基于纳米金/介孔NiO/泡沫镍纳米复合材料的微型电极用于地下水重金属检测 Article

薛博元, 杨倩, 夏楷东, 李志宏, 陈宇徽, 张大奕, 周小红

《工程(英文)》 2023年 第27卷 第8期   页码 199-208 doi: 10.1016/j.eng.2022.06.005

摘要:

Heavy metals, notably Pb2+ and Cu2+, are some of the most persistent contaminants found in groundwater. Frequent monitoring of these metals, which relies on efficient, sensitive, cost-effective, and reliable methods, is a necessity. We present a nanocomposite-based miniaturized electrode for the concurrent measurement of Pb2+ and Cu2+ by exploiting the electroanalytical technique of square wave voltammetry. We also propose a facile in situ hydrothermal calcination method to directly grow binder-free mesoporous NiO on a three-dimensional nickel foam, which is then electrochemically seeded with gold nanoparticles (AuNPs). The meticulous design of a low-barrier Ohmic contact between mesoporous NiO and AuNPs facilitates target-mediated nanochannel-confined electron transfer within mesoporous NiO. As a result, the heavy metals Pb2+ (0.020 mg·L−1 detection limit, 2.0–16.0 mg·L−1 detection range) and Cu2+ (0.013 mg·L−1 detection limit, 0.4–12.8 mg·L−1 detection range) can be detected simultaneously with high precision. Furthermore, other heavy metal ions and common interfering ions found in groundwater showed negligible impacts on the electrode's performance, and the recovery rate of groundwater samples varied between 96.3% ± 2.1% and 109.4% ± 0.6%. The compactness, flexible shape, low power consumption, and ability to remotely operate our electrode pave the way for onsite detection of heavy metals in groundwater, thereby demonstrating the potential to revolutionize the field of environmental monitoring.

关键词: AuNPs     Mesoporous NiO     Miniaturized electrode     Heavy metal ions     Groundwater     Square wave voltammetry    

Nano-copper ions assembled cellulose-based composite with antibacterial activity for biodegradable personal

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1544-1554 doi: 10.1007/s11705-022-2288-2

摘要: The current SARS-CoV-2 pandemic has resulted in the widespread use of personal protective equipment, particularly face masks. However, the use of commercial disposable face masks puts great pressure on the environment. In this study, nano-copper ions assembled cotton fabric used in face masks to impart antibacterial activity has been discussed. To produce the nanocomposite, the cotton fabric was modified by sodium chloroacetate after its mercerization, and assembled with bactericidal nano-copper ions (about 10.61 mg·g–1) through electrostatic adsorption. It demonstrated excellent antibacterial activity against Staphylococcus aureus and Escherichia coli because the gaps between fibers in the cotton fabric allow the nano-copper ions to be fully released. Moreover, the antibacterial efficiency was maintained even after 50 washing cycles. Furthermore, the face mask constructed with this novel nanocomposite upper layer exhibited a high particle filtration efficiency (96.08% ± 0.91%) without compromising the air permeability (28.9 min·L–1). This green, economical, facile, and scalable process of depositing nano-copper ions onto modified cotton fibric has great potential to reduce disease transmission, resource consumption, and environmental impact of waste, while also expanding the range of protective fabrics.

关键词: cellulose-based     nanocomposite     biodegradable antibacterial fabric     nano-copper ions     face masks    

Activated carbon induced oxygen vacancies-engineered nickel ferrite with enhanced conductivity for supercapacitor

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2088-2100 doi: 10.1007/s11705-023-2352-6

摘要: Activated carbon induced oxygen vacancies-engineered nickel ferrite with enhanced conductivity for supercapacitor application

关键词: nickel ferrite conductivity     carbon oxygen vacancies    

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 226-235 doi: 10.1007/s11705-022-2198-3

摘要: Prussian blue and its analogs are extensively investigated as a cathode for ammonium-ion batteries. However, they often suffer from poor electronic conductivity. Here, we report a Ni2Fe(CN)6/multiwalled carbon nanotube composite electrode material, which is prepared using a simple coprecipitation approach. The obtained material consists of nanoparticles with sizes 30–50 nm and the multiwalled carbon nanotube embedded in it. The existence of multiwalled carbon nanotube ensures that the Ni2Fe(CN)6/multiwalled carbon nanotube composite shows excellent electrochemical performance, achieving a discharge capacity of 55.1 mAh·g–1 at 1 C and 43.2 mAh·g–1 even at 15 C. An increase in the ammonium-ion diffusion coefficient and ionic/electron conductivity based on kinetic investigations accounts for their high performance. Furthermore, detailed ex situ characterizations demonstrate that Ni2Fe(CN)6/multiwalled carbon nanotube composite offers three advantages: negligible lattice expansion during cycling, stable structure, and the reversible redox couple. Therefore, the Ni2Fe(CN)6/multiwalled carbon nanotube composite presents a long cycling life and high rate capacity. Finally, our study reports a desirable material for ammonium-ion batteries and provides a practical approach for improving the electrochemical performance of Prussian blue and its analogs.

关键词: nickel ferrocyanides     NH4+     electrochemistry     Prussian blue     aqueous ammonium ion batteries    

Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method

Tianjie Liu, Hao Fan, Yanxia Xu, Xingfu Song, Jianguo Yu

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 545-553 doi: 10.1007/s11705-017-1665-8

摘要: The effects of Na , Mg , Al and Fe ion concentrations on the crystal morphology of calcium sulfate hemihydrate whiskers formed via a hydrothermal method have been studied. In the presence of Al concentrations higher than 1×10 mol/L the whiskers were significantly shorter and thicker and the presence of Mg and Fe resulted in shorter whiskers. The presence of Na did not affect the morphology of the whiskers. Through elemental analysis, it was determined that Mg and Al were selectively adsorbed on the surfaces of the crystals, whereas Fe underwent a hydrolysis reaction to form a brown precipitate which decreased the ion concentration in the solution. These results indicate that in raw materials used for the industrial preparation of calcium sulfate whiskers, Al and Fe should be removed and the Mg concentration should be less than 8 × 10 mol/L in order to obtain pure whiskers with high aspect ratios.

关键词: metal ions     morphology     calcium sulfate hemihydrate whiskers     hydrothermal method     selective adsorption    

Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2114-2126 doi: 10.1007/s11705-023-2357-1

摘要: In this study, nickel phyllosilicate was synthesized based on molybdenum disulfide (MoS2@NiPS) by the sol-gel method, and then MoS2@NiPS was used to prepare epoxy composites. The thermal stability, flame retardancy, and frictional performances of epoxy composites were studied. With the addition of 3 wt% MoS2@NiPS, the epoxy composite increased the limiting oxygen index from 23.8% to 26.1% and reduced the vertical burning time from 166 s for epoxy resin to 35 s. The residual char of the epoxy composite increased from 11.8 to 20.2 wt%. MoS2@NiPS promoted the graphitization of the residual char, and facilitated the formation of a dense and continuous char layer, thereby improving the fire safety of epoxy resin. The epoxy composite with 3 wt% MoS2@NiPS had excellent wear resistance property with a wear rate of 2.19 × 10−5 mm3·N–1·m–1, which was 68.8% lower than that of epoxy resin. This study presented a practical approach to improve the frictional and fire resistance of epoxy composites.

关键词: molybdenum disulfide     nickel phyllosilicate     epoxy resin     flame retardancy    

Nickel-based metal−organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1493-1504 doi: 10.1007/s11705-022-2168-9

摘要: Metal−organic framework-derived materials have attracted significant attention in the applications of functional materials. In this work, the rod-like nickel-based metal−organic frameworks were first synthesized and subsequently employed as the hard templates and nickel sources to prepare the whisker-shaped nickel phyllosilicate using a facile hydrothermal technology. Then, the nickel phyllosilicate whiskers were evaluated to enhance the mechanical, thermal, flammable, and tribological properties of epoxy resin. The results show that adequate nickel phyllosilicate whiskers can disperse well in the matrix, improving the tensile strength and elastic modulus by 13.6% and 56.4%, respectively. Although the addition of nickel phyllosilicate whiskers could not obtain any UL-94 ratings, it enhanced the difficulty in burning the resulted epoxy resin nanocomposites and considerably enhanced thermal stabilities. Additionally, it was demonstrated that such nickel phyllosilicate whiskers preferred to improve the wear resistance instead of the antifriction feature. Moreover, the wear rate of epoxy resin nanocomposites was reduced significantly by 80% for pure epoxy resin by adding 1 phr whiskers. The as-prepared nickel phyllosilicate whiskers proved to be promising reinforcements in preparing of high-performance epoxy resin nanocomposites.

关键词: metal−organic framework     nickel phyllosilicate     whisker     epoxy resin     mechanical response     tribological performance     flammable property    

Removal of Ni(II) ions from wastewater by micellar enhanced ultrafiltration using mixed surfactants

Amar D. Vibhandik, Kumudini V. Marathe

《化学科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 79-86 doi: 10.1007/s11705-014-1407-0

摘要: Ni(II) ions were removed from aqueous waste using micellar enhanced ultrafiltration (MEUF) with a mixture of surfactants. The surfactant mixture was the nonionic surfactant Tween 80 (TW80) mixed with the anionic surfactant sodium dodecyl sulfate (SDS) in different molar ratios ranging from 0.1–1.5. The operational variables of the MEUF process such as pH, applied pressure, surfactant to metal ion ratio and nonionic to ionic surfactant molar ratio (α) were evaluated. Rejection of Ni and TW80 was 99% and 98% respectively whereas that for SDS was 65%. The flux and all resistances (fouling resistance, resistance due to concentration polarization) were measured and calculated for entire range of α respectively. A calculated flux was found to be declined with time, which was mainly attributed to concentration polarization rather than resistance from membrane fouling.

关键词: MEUF     Ni (II) ions     membrane resistance     concentration polarization     mixed surfactants    

Tool wear mechanisms in the machining of Nickel based super-alloys: A review

Waseem AKHTAR,Jianfei SUN,Pengfei SUN,Wuyi CHEN,Zawar SALEEM

《机械工程前沿(英文)》 2014年 第9卷 第2期   页码 106-119 doi: 10.1007/s11465-014-0301-2

摘要:

Nickel based super-alloys are widely employed in aircraft engines and gas turbines due to their high temperature strength, corrosion resistance and, excellent thermal fatigue properties. Conversely, these alloys are very difficult to machine and cause rapid wear of the cutting tool, frequent tool changes are thus required resulting in low economy of the machining process. This study provides a detailed review of the tool wear mechanism in the machining of nickel based super-alloys. Typical tool wear mechanisms found by different researchers are analyzed in order to find out the most prevalent wear mechanism affecting the tool life. The review of existing works has revealed interesting findings about the tool wear mechanisms in the machining of these alloys. Adhesion wear is found to be the main phenomenon leading to the cutting tool wear in this study.

关键词: tool wear     nickel based super-alloy     wear mechanism    

Simultaneous removal of total oxidizable carbon, phosphate and various metallic ions from HO solution

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 470-482 doi: 10.1007/s11705-022-2231-6

摘要: Amino-functionalized zirconia was synthesized by the co-condensation method using zirconium butanol and 3-aminopropyltriethoxy silane for the simultaneous removal of various impurities from aqueous 30% H2O2 solution. The results of Fourier transform infrared (FTIR) and Zeta potential showed that the content of N in amino-functionalized zirconia increased with the added amount of 3-aminopropyltriethoxy silane. Accordingly, the removal efficiency of total oxidizable carbon, phosphate and metallic ions from the H2O2 solution increased. The adsorbent with an N content of 1.62% exhibited superior adsorption performance. The removal efficiency of 82.7% for total oxidizable carbon, 34.2% for phosphate, 87.1% for Fe3+, 83.2% for Al3+, 55.1% for Ca2+ and 66.6% for Mg2+, with a total adsorption capacity of 119.6 mg·g–1, could be achieved. The studies conducted using simulated solutions showed that the adsorption process of phosphate on amino-functionalized zirconia is endothermic and spontaneous, and the behaviors could be well described by the pseudo-second-order model and Langmuir model with a maximum adsorption capacity of 186.7 mg·g–1. The characterizations of the spent adsorbents by Zeta potential, FTIR and X-ray photoelectron spectroscopy revealed that the adsorption mechanism of phosphate is predominantly electrostatic attraction by the protonated functional groups and complementary ligand exchange with zirconium hydroxyl groups.

关键词: adsorption     zirconia     total oxidizable carbon     phosphate     metallic ions     hydrogen peroxide    

Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 484-497 doi: 10.1007/s11705-021-2074-6

摘要: The nanocomposites of flower-like nickel phyllosilicate particles incorporated into epoxy resin were fabricated via an in-situ mixing process. The flower-like nickel phyllosilicate particles were firstly synthesized using a mild self-sacrificial templating method, and the morphology and lamellar structure were examined carefully. Several properties of mechanical, thermal and tribological responses of epoxy nanocomposites were performed. It was demonstrated that adequate flower-like nickel phyllosilicate particles dispersed well in the matrix, and the nanocomposites displayed enhanced tensile strength and elastic modulus but decreased elongation at break as expected. In addition, friction coefficient and wear rate were increased first and then decreased along with the particle content, and showed the lowest values at a mass fraction of 5%. Nevertheless, the incorporated flower-like nickel phyllosilicate particles resulted in the continuously increasing thermal stability of epoxy resin (EP) nanocomposites. This study revealed the giant potential of flower-like particles in preparing high-quality EP nanocomposites.

关键词: nickel phyllosilicate     flow-like structure     mechanical property     thermal stability     tribological performance    

Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments

Bao Jiang, Dechun Su, Xiaoqing Wang, Jifang Liu, Yibing Ma

《环境科学与工程前沿(英文)》 2018年 第12卷 第2期 doi: 10.1007/s11783-017-0990-y

摘要: The phytotoxicity of added copper (Cu) and nickel (Ni) is influenced by soil properties and field aging. However, the differences in the chemical behavior between Cu and Ni are still unclear. Therefore, this study was conducted to investigate the extractability of added Cu and Ni in 6-year field experiments, as well as the link with their phytotoxicity. The results showed that the extractability of added Cu decreased by 6.63% (5.10%–7.90%), 22.5% (20.6%–23.9%), and 6.87% (0%–17.9%) on average for acidic, neutral, and alkaline soil from 1 to 6 years, although the phytotoxicity of added Cu and Ni did not change significantly from 1 to 6 years in the long term field experiment. Because of dissolution of Cu, when the pH decreased below 7.0, the extractability of Cu in alkaline soil by EDTA at pH 4.0 could not reflect the effects of aging. For Ni, the extractability decreased by 18.1% (10.1%–33.0%), 63.0% (59.2%–68.8%), and 22.0% (12.4%–31.8%) from 1 to 6 years in acidic, neutral, and alkaline soils, respectively, indicating the effects of aging on Ni were greater than on Cu. The sum of ten sequential extractions of Cu and Ni showed that added Cu was more extractable than Ni in neutral and alkaline soil, but similar in acidic soil.

关键词: Copper     Nickel     EDTA     Sequential extraction    

标题 作者 时间 类型 操作

Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation

Yiyi Fan, Jinyong Li, Saidi Wang, Xiuxia Meng, Yun Jin, Naitao Yang, Bo Meng, Jiaquan Li, Shaomin Liu

期刊论文

minimized fluorescent chemosensor array utilizing carboxylate-attached polythiophenes on a chip for metal ions

Yui Sasaki, Xiaojun Lyu, Zhoujie Zhang, Tsuyoshi Minami

期刊论文

Spectrokinetics study of probable effects of diverse inorganic ions on bleaching of dye

Rafia AZMAT, Masooda QADRI, Fahim UDDIN

期刊论文

基于纳米金/介孔NiO/泡沫镍纳米复合材料的微型电极用于地下水重金属检测

薛博元, 杨倩, 夏楷东, 李志宏, 陈宇徽, 张大奕, 周小红

期刊论文

Nano-copper ions assembled cellulose-based composite with antibacterial activity for biodegradable personal

期刊论文

Activated carbon induced oxygen vacancies-engineered nickel ferrite with enhanced conductivity for supercapacitor

期刊论文

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

期刊论文

Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method

Tianjie Liu, Hao Fan, Yanxia Xu, Xingfu Song, Jianguo Yu

期刊论文

Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance

期刊论文

Nickel-based metal−organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently

期刊论文

Removal of Ni(II) ions from wastewater by micellar enhanced ultrafiltration using mixed surfactants

Amar D. Vibhandik, Kumudini V. Marathe

期刊论文

Tool wear mechanisms in the machining of Nickel based super-alloys: A review

Waseem AKHTAR,Jianfei SUN,Pengfei SUN,Wuyi CHEN,Zawar SALEEM

期刊论文

Simultaneous removal of total oxidizable carbon, phosphate and various metallic ions from HO solution

期刊论文

Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance

期刊论文

Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments

Bao Jiang, Dechun Su, Xiaoqing Wang, Jifang Liu, Yibing Ma

期刊论文